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ABSTRACT Observation of the size distribution of tran-
sient cavities in computer simulations of water, n-hexane, and
n-dodecane under benchtop conditions shows that the sizes of
cavities are more sharply defined in liquid water but the
most-probable-size cavities are about the same size in each of
these liquids. The calculated solvent atomic density in contact
with these cavities shows that water applies more force per unit
area of cavity surface than do the hydrocarbon liquids. This
contact density, or "squeezing" force, reaches a maximum
near cavity diameters of 2.4 A. The results for liquid water are
compared to the predictions ofsimple theories and, in addition,
to results for a reference simple liquid. The numerical data for
water at a range of temperatures are analyzed to extract a
surface free energy contribution to the work of formation of
atomic-size cavities. Comparison with the liquid-vapor inter-
facial tensions of the model liquids studied here indicates that
the surface free energies extracted for atomic-size cavities
cannot be accurately identified with the macroscopic surface
tensions of the systems.

The solubilities of inert gases in water-hydrophobic solubili-
ties-are the subject of current interest because of their rele-
vance to our understanding of the molecular assembly of
large-scale structures in aqueous solutions (1-3). The folding or
association of proteins (4-6) and the formation of micelles and
membranes (7-9) are examples of such assembly processes.
A central quantity in theories of hydrophobic solubilities is

the quasi-static work required to open in the solvent a cavity
of sufficient size to accommodate the solute (10). Recently,
it has been demonstrated that this cavity formation work can
be obtained efficiently for spherical atomic-size cavities by
study of transient cavities observed in molecular dynamics
simulations of the neat solvents (11). Comparison of those
quantities for aqueous and nonaqueous solvents provides
direct insight into the molecular mechanisms responsible for
hydrophobic solubilities. Additionally, those data should
provide the basis for more accurate simple theories (1, 12-16)
that might be applicable to the problems indicated above.
That experimental solubilities of inert gases are typically

greater in organic solvents than in water suggests that the
likelihood of finding a cavity of atomic size is greater in
organic liquids. However, the fractional free volume is larger
for water than for typical organic solvents-i.e., typical
organic liquids are denser than liquid water when viewed in
terms of the packing fraction. In the context of a simple
solubility model, the scaled particle model (12-14), those
facts have suggested that the relative smallness of interstitial
holes in liquid water is not chiefly due to specific intermo-
lecular correlations of this unique solvent but instead is
mostly due to the relatively small size of the water molecule
(17, 18) and, furthermore, that the free volume is distributed

in smaller packets for water (11). The primary objective of
this study was to obtain numerically exact results that permit
a direct test of the theoretical solubility models that might
lead to such interesting physical conclusions.

OBJECTIVES AND METHODS
Several related mathematical quantities are especially signif-
icant to the study of transient cavities in liquids and to the
development of the scaled particle treatments. The first such
quantity is the insertion probability, p(R). It is defined as the
likelihood that a hard sphere solute of radius R could be
located at an arbitrary point within the liquid without overlap
with the van der Waals volume ofany solvent molecule. If VR
denotes the average volume accessible to such a solute, then

p(R)--VR
V

[1]

where V is the volume of the solvent.
The second quantity of interest, pm(R), is related to p(R) by

p(
p(R)= pm(R')dR' [2]

or, conversely,

_ dp(R)
Pm(R) =-dR [3]

Thus, Pm(R)dR is the probability that the largest hard sphere
solute that could be inserted at a randomly chosen point
would have a radius within dR of R.
The present study will be limited to cases where the solvent

molecules are represented as a collection of spherical inter-
action sites of one kind only. The extension to solvents
composed of sites of several different types does not cause
any conceptual complications (11). A van der Waals radius,
Rs, of the solvent exclusion spheres must be given in order
to calculate p(R). For example, we typically consider Rs
1.35 A for water. However, the geometric problem of finding
whether a hard sphere solute at a particular location is outside
the van der Waals excluded volume depends only on the
parameter A = R + Rs with A > 0. Thus, if the results for a
particular value ofRs are available for a range ofR extending
down to -Rs, results for other values of Rs can be obtained
by a simple translation of the R axis (19, 20). Furthermore,
results displayed as a function of A alone are independent of
Rs. The significance of negative values of the van der Waals
radius R in the general scaled particle approach has been long
appreciated. For the particular context of hydrophobic sol-
ubilities, this point was discussed in footnote 33 of ref. 11
where the connection of pm(R) with the nearest-neighbor
distribution was emphasized. For further discussion of this
latter quantity see ref. 21.
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The final definition that we need combines p(R) and pm(R)
to describe the conditional solvent density just outside a
spherical solute. Since the present study is limited to cases
where the solvent molecules are represented as a collection
of spherical interactions sites of one kind only, the condi-
tional solvent density that we seek is the density of those
interaction sites. They are present in the bulk liquid with
density ps. Then the desired conditional, or contact, density
is given as

(i1 pm(R)
psG(A) = k~rA pR [4]

Since -kBTlnp(R) = AI.R is the work offormation of a cavity
of radius R, we obtain from Eqs. 3 and 4 that

(1 dAAJR
kBTPSG(A) =4A2 dR[5]

is the compressive force per unit area exerted by the solvent
on the cavity whose surface area is 41rA2 (15, 16, 19, 20).
The data for evaluation of these quantities are molecular

configurations produced by conventional molecular dynam-
ics calculations on the neat liquids n-hexane, n-dodecane,
water, and simple model atomic liquids. Ref. 11 describes the
details of the calculations and the method for obtaining
insertion probabilities. The molecular dynamics trajectory of
ref. 11 for 343 TIP4P water molecules at temperature of 300
K and density 1 g/cm3 was extended to 2 ns and the number
of gridpoints was increased to 400,000 for each of the 8000
configurations considered. In addition, we have augmented
this data to check on the magnitude of system size corrections
by performing calculations on 1000 TIP4P water molecules
under the same thermodynamic conditions. Four thousand
configurations chosen uniformly from 0.5-ns molecular dy-
namics trajectory were analyzed by inserting 800,000 grid-
points in each configuration. Fig. 1 compares the G(A)
obtained for the two different system sizes. The differences
are insignificant for A < 2.0 A and modest for 2.0 A -kA c 3.5
A.
A distinct but related issue of sensitivity of these results to

system sizes derives from the following physical argument
(22). When the formation of a cavity of substantial size is
observed, the surrounding fluid must be somewhat com-
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FIG. 1. The lower results test the effects of system size for the
contact correlation function G(A) of TIP4P water at 300 K and the
normal density. The circles are the molecular dynamics results for a
system of 343 water molecules. The line is the same quantity for a
system size of 1000 molecules. The upper results check the density
dependence G(A) for 343 TIP4P water at 300 K. The circles are the
results for a density of0.996 g/cm3; the line is the result for a density
of 1.000 g/cm3.

pressed because the molecular dynamics calculations im-
posed a specific constant volume, V. If the observed cavity
is about the size of one molecule, then the density of the
surrounding fluid must be larger by approximately 1/V. Ifthe
volume were very large, the effect of the constant volume
constraint would not be significant. For 343 water molecules
we checked the sensitivity of G(A) to a change in density of
this magnitude by carrying out calculations in which the
solvent density was decreased by 1/V. The comparison in
Fig. 1 shows that for this system size such a density change
is not significant for A < 3.0 A.

RESULTS
Two different comparative views of our results are instruc-
tive. In the first, we compare the cavity statistics obtained
from simulated water with those for the paraffin solvents,
n-hexane and n-dodecane, described as chains of spherical
united atoms representing either methyl or methylene
groups. The second comparison is between the results for
water and the predictions of simple theories including results
for a simple, nonassociated atomic liquid represented here by
a suitably identified Lennard-Jones liquid.
Water vs. Oil. Fig. 2 shows G(A) for liquid water, n-hexane,

and n-dodecane. The contact density at the surface of a hard
sphere solute is lower in the hydrocarbon solvents than in
water. Thus, the water more strongly squeezes the solute,
thereby contributing to the driving force for its disposition
into another phase. The kink in G(A) for the hydrocarbon
liquids at A = 0.77 A is due to the rigid C-C bond, of length
1.54 A. Due to the additional rigidity of C-C--C bond
angles, another cusp should be expected at half the next-
nearest-neighbor C-C distance. However, that cusp is sub-
stantially overlapped by three-body contributions to the
excluded volume and is not apparent in the figure. (See Eq.
6 below.)
The contact density is slightly higher for n-hexane relative

to n-dodecane. This can be interpreted in terms of a "screen-
ing" of the interaction between the hard sphere solute and
methyl or methylene groups on the paraffin molecules. In
order to drag such a group into contact with the solute, the
conformations of the chain molecule must be somewhat
restricted. This entails a free energy penalty. That penalty is
somewhat larger for n-dodecane than for n-hexane because
the chain molecule is longer.

Fig. 3 shows p(R) and pm(R) for these liquids assuming
typical values of Rs in each case. Note that these functions
are followed down to the lower limit of their natural range R
> -Rs. The contrast between water and the paraffin solvents
is striking. One simple characteristic of the distributions

0 1 2
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3

FIG. 2. G(A) for water, n-hexane, and n-dodecane from top to
bottom, respectively, on the right side of the graph.
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FIG. 3. Cavity size distribution functions p(R) and pm(R) for
water, n-hexane, and n-dodecane. Here, Rs = 1.35 A for water
molecules and 1.85 A for methyl and methylene groups of the
hydrocarbons. The results for n-hexane and n-dodecane are nearly
indistinguishable for these functions. G(A) (Fig. 2) more sensitively
distinguishes these very similar liquids.

pm(R) is the maximum that indicates the most probable value
of the van der Waals radius of the largest hard sphere that
could be inserted. If this most probable value were taken as
the sole indicator of the size of typical cavities that occur in
these solvents, then the results of Fig. 3 would lead us to the
conclusion that there is no important difference between the
sizes of cavities that occur in water, n-hexane, and n-dode-
cane. However, the width of the size distributions pm(R) is
significantly larger for the hydrocarbon liquids than for the
simulated liquid water. As noted above, the widths of these
distributions are independent of the radii of solvent atoms.
Thus, the relative narrowness ofpm(R) is a distinctive feature
of liquid water. This observation provides specific support
for the physical argument that cavities are more sharply
defined in water than in organic solvents (11). Note partic-
ularly that the likelihood of finding an atomic-size cavity in
water is less than in the liquid paraffins, in agreement with the
conventional picture of the hydrophobic effect.
Comparison with Simple Theories. Here we compare the

numerical results for TIP4P water with theoretical results. A
conclusion that might be drawn (17, 18) from one of the
"6simple theories," the scaled particle model, is that hard-
sphere solubilities are principally determined by the size of
the solvent molecules, the packing density ofthe solvent, and
the equation of state, but not by the specific structure of the
liquid. To have a basis for testing this hypothesis, we have
studied a Lennard-Jones atomic liquid, at the same number
density as liquid water, for which the interaction parameters
are adjusted to bring the pressure into agreement with the
pressure of liquid water at 300 K and for which the intermo-
lecular distance of closest approach is the same at- that for
O-O atoms in liquid water: 2.7 A = 2 x 1.35 A. Because the
Lennard-Jones liquid is so well understood, this adjustment
requires only consultation of the literature (23-25). The
Lennard-Jones parameters for this reference simple liquid
are E = 272 K = 0.541 kcal/mol (1 kcal = 4.18 kJ) and a =
2.67 A. This reference system is rather close to liquid-vapor
coexistence at T = 0.87 x Tc, where T, is the critical
temperature. Since the triple temperature, T, is approxi-
mately T. = 0.56 x T, (26), this system is roughly two-thirds
of the way from the triple point to the critical point. Tanaka
(27) also compared cavity statistics between computer-
simulated liquid water and a Lennard-Jones atomic liquid.
However, he did not adjust the interatomic interactions so
that the pressure of the reference liquid was the same as that
for liquid water nor were the typical distances of closest
molecular approach the same. For these reasons, that pre-
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FIG. 4. G(A) for TIP4P water compared to theoretical results. The
heavy solid curve shows the numerical results for the TIP4P model;
the filled circles are the results, obtained from tabulations in the
published report (12), of the integral equation approximation; the
dotted line represents the scaled particle model (22); the dashed line
is the result for the reference simple liquid identified in the text. The
solid curves flanking the experimental results are two adaptations of
the revised scaled particle model of ref. 15. The upper curve utilizes
the value fy = 84 dyne/cm (1 dyne = 10 jAN) in the macroscopic form
Eq. 7; the lower curve uses the experimental value y = 71.5 dyne/cm.

vious comparison is not the most useful one here. Recently,
Guillot et al. (28) also compared cavity works between water
and a hard sphere liquid. Their data confirm the results and
physical argument of ref. 11.

In Fig. 4 the numerical results for G(A) for the TIP4P model
of water are compared with results of the scaled particle
model (29), two adaptations of the revised scaled particle
model (15), an integral equation theory (16), and numerical
results for the reference simple liquid. These comparisons
provide a more sensitive test of statistical mechanical solu-
bility models than does the comparison of cavity works
alone.

Fig. 4 shows that the integral equation G(A) is significantly
too high. We associate the errors of the integral equation
results with the fact that the integral equation approximation
is not expected to reproduce correctly the asymptotic, large
cavity result lim.,, G(A) = np/p (16). (Herep is the pressure,
f-1 = kBT, and p = Ps).

In contrast, G(A) from the scaled particle model is signif-
icantly too low. It might be expected that this simple model
would be more accurate for the reference simple liquid than
for water. It requires precisely the same parameters for both
liquids and it was developed in the context of theories of
simple liquids. However, as can be seen from Fig. 4, the
scaled particle model cannot be regarded as an accurate
theory for the reference liquid either. Nevertheless, the
results of the model are qualitatively more similar to the
numerically exact results for water and for the reference
simple liquid than they are to G(A) for the hydrocarbon liquids
(Fig. 2).
The two curves that represent the revised scaled particle

model bracket the numerical results over the range shown.
The revised scaled particle model improves on its predeces-
sor in three important ways. The first modification improves
the description of the small cavity behavior by the use of the
known oxygen-oxygen pair distribution function for liquid
water. This modification is based on the exact relation:

p(R) = 1 + > (1l) K( !J)I [6]

where nA is the instantaneous number ofoxygen atoms within
a sphere of radius A (15, 19, 20, 30, 31). The brackets indicate
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the thermal average over configurations of the neat solvent.
Thej = 2 term in this sum can be calculated exactly if exact
results are available for the oxygen-oxygen pair distribution
function of the solvent.

Truncation of the series Eq. 6 after thej = 2 term produces
a theory that is correct in a small cavity domain but incorrect
for large cavities. For large A, G(A) is expected to behave
asymptotically as

G(A)-(- ) + ( A-1 (- [7]

where y is the tension of the liquid-vapor interface ofthe pure
solvent and 8 describes a curvature correction (15). The
second modification of the scaled particle model is the use of
the measured surface tension y to improve the large cavity
behavior of G(A).
The final modification of the scaled particle model to

achieve the revised theory is to assume that the formula

G(A) () + (iZ)A-1 -) (4pS)A2 + G4A-4 [7']

is accurate for A greater than A* to be specified. This formula
is then required to join smoothly at A* with the G(A) calcu-
lated from Eq. 6. This requirement determines 8 and G4. The
adaptations ofthe revised scaled particle model shown in Fig.
4 implement these ideas using the oxygen-oxygen radial
distribution function for the TIP4P model of water. The
three-term approximation to the series for p(R) is accurately
equal to our numerical results for A c 1.7 A. The revised
scaled particle model results shown in Fig. 4 used A* = 1.75
A as the joining point. The two different curves correspond
to different values of y that were assumed. The lower curve
employs the measured tension of the water liquid-vapor
interface. The higher curve adopts a value of y = 84 dyne/cm
obtained from the direct fit to Eq. 7, as discussed in the next
section. Fig. 4 shows that the revised scaled particle model
can be effective in describing our cavity statistics over the
range shown.
The numerical results show a gentle maximum in G(A) for

cavities A 2.4 A. This is consistent with the conventional
picture that G(A) should exhibit a single maximum that can be
taken as the "continental divide" between a small cavity
region and a large cavity region. In view ofEq. 7, the position
ofthis maximum suggests the importance ofthe macroscopic,
large cavity behavior for rather small solutes. In this regard
we note that the work ofPostma et al. (32) suggested that G(A)
does not exhibit just a single local maximum. Although
precisely the contact density was not calculated in that work,
the published results indicate the presence of two local
maxima, one located near A 3.0 A and another around A
4.5 A. Since our results extend only to A = 3.5 A, we are
unable to verify the existence of the second maximum in this
study.
The observed differences in G(A) between water and the

reference simple liquid are due to differences between the
characteristic structures of these liquids. These differences
are modest but appreciable even for the small sized cavities
beginning with A > 1.35 A. More specifically, the atomic pair
correlation function for the reference liquid is different than
the oxygen-oxygen function for water and, therefore, thej =
2 term in Eq. 6 is different for these two liquids. The
importance of the correct atomic pair structure can be seen
by comparison of the scaled particle model results with those
of the revised scaled particle theory. The revised theory
incorporates the known oxygen-oxygen pair correlation
function and provides the correct j = 2 term of Eq. 6. This
leads to significant differences in G(A) in the range 1.35 A <

A < A*. But the effect of the j = 2 term extends beyond this
range, contributing to the differences between the two the-
ories for A* <A.

Analysis of Cavity Surface Free Energies. The scaled par-
ticle model is known to impute improper temperature vari-
ations to the surface tension of the water liquid-vapor
interface (refs. 15 and 33; table XVI of ref. 19 and supporting
discussion). It is interesting to ask whether utilizing numer-
ically exact results for G(A) over the same microscopic length
scales would provide an accurate description of thermody-
namics of that interface. Eq. 7 leads to a simple graphical
analysis that addresses that question. Since the pressure is
low for the thermodynamic states of interest, the constant
term of Eq. 7 may be neglected. Under that assumption, a
plot ofA2G(A) should be linear and the coefficient ofthe linear
term determines the parameter 'y.
We have performed such an analysis for G(A) obtained

from molecular dynamics calculations on TIP4P water at four
different temperatures. The primary G(A) results are shown
in Fig. 5 and the graphical analysis is displayed in Fig. 6. Over
the range covered by the data, the linearity of the curves is
good.
The y parameter extracted from least-squares fitting of a

linear function to the curve T = 303 K of Fig. 6 is 84 dyne/cm,
somewhat larger than the experimental liquid-vapor surface
tension of 71 dyne/cm. The y values obtained for the other
temperatures decrease with increasing temperature more
rapidly than do the experimental surface tensions so that at
the highest temperature treated here the extracted y param-
eter is very close to the experimental surface tension of the
water liquid-vapor interface. Considering that the curves in
Fig. 6 are approximately linear down to A = 1.75 A (R = 0.4
A), it might be suggested that Eq. 7 gives a satisfactory
description of G(A) even for cavities of subatomic sizes.
However, it should be borne in mind that liquid-vapor
interfacial thermodynamics was not considered in the param-
eterization ofthe TIP4P model ofwater; therefore, this model
cannot be expected to give an accurate description of inter-
facial properties. Indeed, the one calculation of the liquid-
vapor interfacial tension for this model (34, 35) yielded a
value ofabout 140 dyne/cm at 325 K, quite different from the
fitted 'y. Furthermore, if the same analysis is applied to the
results for the reference simple liquid, similarly good linearity
is observed with the parameter y 54 dyne/cm. This is
consistent with Fig. 4, which indicates that, over the range
shown, the G(A) results for TIP4P water and for the reference
simple liquid are not'wildly dissimilar. However, numerical
results for the Lennard-Jones liquid (36) and experimental
results for liquid Ar (27) indicate that the liquid-vapor surface
tension for the reference simple liquid should be 'y 15
dyne/cm.
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FIG. 5. Temperature dependence of G(A) for the TIP4P model of
water at experimental densities for atmospheric pressure. The num-
bers labeling the four curves give the temperatures in K.
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B0 , . * o w / The numerical data for water over a range of temperatures

so/ / were analyzed to extract a surface free energy contribution to
the work offormation ofatomic-size cavities. Comparison with
known results for the liquid-vapor interfacial tension of these

t0 model liquids indicated that the extracted surface free energy
for cavities of atomic size cannot be accurately identified with10 the macroscopic surface tensions for the systems.

In view of the importance of the problems of hydrophobic)o
solubilities, we feel that it would be useful to test available

0opFtheories more extensively than has been done here. Those
more searching tests should probe the sensitivity of the

io theories to the description of the liquid water and should
analyze the solubility results over a broader range of ther-

o0 modynamic conditions. For further theoretical development
1.5 2.0 2.5 3.0 3.5 4.0 it would also be necessary to obtain data over a wider range

go of cavity sizes.
X (A)

FIG. 6. Plot of 41TA2G(A) vs. A for the results of Fig. 5. The units
have been chosen so that the slopes of these curves are y of Eq. 7 in
dyne/cm. The y values obtained from least-squares fitting of linear
functions to these data are 84, 80, 74, and 62 dyne/cm from the
highest to the lowest temperatures, respectively, indicated in Fig. 5.

Because ofthese points, we conclude that the y parameters
extracted from Fig. 6 are not accurately the liquid-vapor
surface tensions for the models considered. We therefore
expect that if results over a much larger range of cavity sizes
were available then the slopes of the graphs of Fig. 6 would
continually and gradually shift to the A -X oc asymptotic

behavior characteristic to a given model liquid.

CONCLUSIONS
Observation of the size distribution of transient cavities in
computer simulations of water, n-hexane, and n-dodecane
under benchtop conditions has shown that the most probable
sizes of cavities in these liquids are similar but the distribu-
tion of cavity sizes is markedly sharper in liquid water. When
the solvent atomic density in contact with these cavities was
examined, it established that water applies more force per
unit area of cavity surface than do the hydrocarbon liquids.
This contact density, or "squeezing" force, reaches a max-
imum near cavity diameters of 2.4 A. These new numerical
results and analyses provide an especially stringent test of
theories of hydrophobic solubilities and provide new insight
into the molecular mechanisms of hydrophobic effects.

G(A) for liquid water was compared to the predictions of
simple theories and, in addition, to results for a reference
simple liquid. The integral equation results for the contact
density are significantly too high and the corresponding
predictions of the scaled particle model are significantly too
low. The failure of the integral equation theory for these
quantities is probably related to a failure of the theory to
conform to the expected limit for macroscopically large
cavities-i.e., the wall limit. The revised scaled particle
model falls between those two sets of theoretical results and,
with some adaptation, can provide an effective description of
the numerical data throughout the regime of intermediate
cavity sizes. The differences in G(A) between water and a
suitable reference simple liquid, without the characteristic
structure of liquid water, are slight but appreciable.
The contact density for liquid water and for the scaled particle

model was further compared with the same quantity for the
liquid paraffins. Over the range of atomic sizes, the behavior of
G(A) predicted by the model is more similar to the numerical
results for liquid water than it is to the results for the hydro-
carbon liquids. This emphasizes that, viewed on an atomic
level, the hydrocarbon liquids are strongly structured liquids.
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